20 research outputs found

    Drawing Planar Graphs with Few Geometric Primitives

    Get PDF
    We define the \emph{visual complexity} of a plane graph drawing to be the number of basic geometric objects needed to represent all its edges. In particular, one object may represent multiple edges (e.g., one needs only one line segment to draw a path with an arbitrary number of edges). Let nn denote the number of vertices of a graph. We show that trees can be drawn with 3n/43n/4 straight-line segments on a polynomial grid, and with n/2n/2 straight-line segments on a quasi-polynomial grid. Further, we present an algorithm for drawing planar 3-trees with (8n−17)/3(8n-17)/3 segments on an O(n)×O(n2)O(n)\times O(n^2) grid. This algorithm can also be used with a small modification to draw maximal outerplanar graphs with 3n/23n/2 edges on an O(n)×O(n2)O(n)\times O(n^2) grid. We also study the problem of drawing maximal planar graphs with circular arcs and provide an algorithm to draw such graphs using only (5n−11)/3(5n - 11)/3 arcs. This is significantly smaller than the lower bound of 2n2n for line segments for a nontrivial graph class.Comment: Appeared at Proc. 43rd International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2017

    Beyond Outerplanarity

    Full text link
    We study straight-line drawings of graphs where the vertices are placed in convex position in the plane, i.e., convex drawings. We consider two families of graph classes with nice convex drawings: outer kk-planar graphs, where each edge is crossed by at most kk other edges; and, outer kk-quasi-planar graphs where no kk edges can mutually cross. We show that the outer kk-planar graphs are (⌊4k+1⌋+1)(\lfloor\sqrt{4k+1}\rfloor+1)-degenerate, and consequently that every outer kk-planar graph can be (⌊4k+1⌋+2)(\lfloor\sqrt{4k+1}\rfloor+2)-colored, and this bound is tight. We further show that every outer kk-planar graph has a balanced separator of size O(k)O(k). This implies that every outer kk-planar graph has treewidth O(k)O(k). For fixed kk, these small balanced separators allow us to obtain a simple quasi-polynomial time algorithm to test whether a given graph is outer kk-planar, i.e., none of these recognition problems are NP-complete unless ETH fails. For the outer kk-quasi-planar graphs we prove that, unlike other beyond-planar graph classes, every edge-maximal nn-vertex outer kk-quasi planar graph has the same number of edges, namely 2(k−1)n−(2k−12)2(k-1)n - \binom{2k-1}{2}. We also construct planar 3-trees that are not outer 33-quasi-planar. Finally, we restrict outer kk-planar and outer kk-quasi-planar drawings to \emph{closed} drawings, where the vertex sequence on the boundary is a cycle in the graph. For each kk, we express closed outer kk-planarity and \emph{closed outer kk-quasi-planarity} in extended monadic second-order logic. Thus, closed outer kk-planarity is linear-time testable by Courcelle's Theorem.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Efficient Enumeration of Bipartite Subgraphs in Graphs

    Full text link
    Subgraph enumeration problems ask to output all subgraphs of an input graph that belongs to the specified graph class or satisfy the given constraint. These problems have been widely studied in theoretical computer science. As far, many efficient enumeration algorithms for the fundamental substructures such as spanning trees, cycles, and paths, have been developed. This paper addresses the enumeration problem of bipartite subgraphs. Even though bipartite graphs are quite fundamental and have numerous applications in both theory and application, its enumeration algorithms have not been intensively studied, to the best of our knowledge. We propose the first non-trivial algorithms for enumerating all bipartite subgraphs in a given graph. As the main results, we develop two efficient algorithms: the one enumerates all bipartite induced subgraphs of a graph with degeneracy kk in O(k)O(k) time per solution. The other enumerates all bipartite subgraphs in O(1)O(1) time per solution

    Depth Distribution in High Dimensions

    No full text
    Motivated by the analysis of range queries in databases, we introduce the computation of the Depth Distribution of a set mathcal {B} of axis aligned boxes, whose computation generalizes that of the Klee’s Measure and of the Maximum Depth. In the worst case over instances of fixed input size n, we describe an algorithm of complexity within (formula presented), using space within mathcal (nlog n), mixing two techniques previously used to compute the Klee’s Measure. We refine this result and previous results on the Klee’s Measure and the Maximum Depth for various measures of difficulty of the input, such as the profile of the input and the degeneracy of the intersection graph formed by the boxes

    Clause Learning and New Bounds for Graph Coloring

    No full text
    International audienceGraph coloring is a major component of numerous allocation and scheduling problems. We introduce a hybrid CP/SAT approach to graph coloring based on exploring Zykov's tree: for two non-neighbors, either they take a different color and there might as well be an edge between them, or they take the same color and we might as well merge them. Branching on whether two neighbors get the same color yields a symmetry-free tree with complete graphs as leaves, which correspond to colorings of the original graph. We introduce a new lower bound for this problem based on Mycielskian graphs; a method to produce a clausal explanation of this bound for use in a CDCL algorithm; and a branching heuristic emulating Brelaz on the Zykov tree. The combination of these techniques in both a branch-and-bound and in a bottom-up search outperforms Dsatur and other SAT-based approaches on standard benchmarks both for finding upper bounds and for proving lower bounds
    corecore